Next‐generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance
نویسندگان
چکیده
Transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are extensively cultivated worldwide. To counter rapidly increasing pest resistance to crops that produce single Bt toxins, transgenic plant 'pyramids' producing two or more Bt toxins that kill the same pest have been widely adopted. However, cross-resistance and antagonism between Bt toxins limit the sustainability of this approach. Here we describe development and testing of the first pyramids of cotton combining protection from a Bt toxin and RNA interference (RNAi). We developed two types of transgenic cotton plants producing double-stranded RNA (dsRNA) from the global lepidopteran pest Helicoverpa armigera designed to interfere with its metabolism of juvenile hormone (JH). We focused on suppression of JH acid methyltransferase (JHAMT), which is crucial for JH synthesis, and JH-binding protein (JHBP), which transports JH to organs. In 2015 and 2016, we tested larvae from a Bt-resistant strain and a related susceptible strain of H. armigera on seven types of cotton: two controls, Bt cotton, two types of RNAi cotton (targeting JHAMT or JHBP) and two pyramids (Bt cotton plus each type of RNAi). Both types of RNAi cotton were effective against Bt-resistant insects. Bt cotton and RNAi acted independently against the susceptible strain. In computer simulations of conditions in northern China, where millions of farmers grow Bt cotton as well as abundant non-transgenic host plants of H. armigera, pyramided cotton combining a Bt toxin and RNAi substantially delayed resistance relative to using Bt cotton alone.
منابع مشابه
Hybridizing transgenic Bt cotton with non-Bt cotton counters resistance in pink bollworm.
Extensive cultivation of crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) has suppressed some major pests, reduced insecticide sprays, enhanced pest control by natural enemies, and increased grower profits. However, these benefits are being eroded by evolution of resistance in pests. We report a strategy for combating resistance by cro...
متن کاملAgrobacterium-mediated Transformation of Cotton (Gossypium hirsutum) Using a Synthetic cry1Ab Gene for Enhanced Resistance Against Heliothis armigera
Cotton (Gossypium hirsutum L.) is an important fiber crop in Iran, cultivated on 150000-200000 ha of land. In Iran the estimated loss due to the insect pest is more than 30%. Traditionally, pests are controlled by 10-12 times spraying per growing season of environmentally harmful chemical insecticides (e.g. endosulfan and/or methosystox). In order to produce transgenic cotton resistance to in...
متن کاملEarly Warning of Cotton Bollworm Resistance Associated with Intensive Planting of Bt Cotton in China
Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to promote survival of susceptible pests. To delay pest resistance to transgenic cotton producing Bt toxin Cry1Ac, farmers in the United S...
متن کاملIncreased Frequency of Pink Bollworm Resistance to Bt Toxin Cry1Ac in China
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The main approach for delaying pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to transgenic cotton producing Bt toxin Cry1Ac...
متن کاملDelayed resistance to transgenic cotton in pink bollworm.
Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some key insect pests and thus can reduce reliance on insecticides. Widespread planting of such Bt crops increased concerns that their usefulness would be cut short by rapid evolution of resistance to Bt toxins by pests. Pink bollworm (Pectinophora gossypiella) is a major pest that has experienced intense selection for resistanc...
متن کامل